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PROGRESS IN THE SEMANTIC ANALYSIS OF SCIENTIFIC CODE

Mark Stewart
Dynacs Engineering Company, Inc.

2001 Aerospace Parkway
Brook Park, Ohio 44142

Mark.E.Stewart@grc.nasa.gov
216–977–1163

Existing software analysis tools use the semantics of the programming language to
check our codes: Are variables declared and initialized?  Do variable types match?
Where do memory leaks and memory errors occur?  However, the meaning or
semantics that a code developer builds into his/her code extends far beyond
programming language semantics.  Scientific code developers use variables to
represent physical and mathematical quantities (mass, derivative), expressions of
quantities to represent physical formulae (Navier-Stokes equation), loops to apply these
formulae in a domain, and conditional expressions to control execution.  These
semantic details are crucial when developers and users try to understand and check
their scientific and engineering codes; further, their analysis is manual, time-consuming,
and error-prone.

This paper reports progress in an experiment to automatically recognize and check
these physical and mathematical semantics.  The experimental procedure combines
semantic declarations with a pattern recognition capability; the code (1)

                                              C?  MA == mass, ACC == acceleration                           (1)
                                                     FF = MA * ACC

contains two semantic declarations for MA and ACC, and with Newton's law among the
recognizable patterns, the procedure recognizes this code as force assigned to FF.
These formula patterns are represented in and recognized by parsers1.  The
conclusions of this procedure are displayed for the user as shown in Figure 1.  A more
detailed explanation of this procedure and its extensions is given in Reference 2.

This experiment’s objective is to understand the limits of this automatic recognition
procedure: Does it apply to a wide range of scientific and engineering codes?  Can it
reduce the time, risk, and effort required to develop and modify scientific code?

Previous work2 demonstrated that scientific concepts and formulae could be
represented and recognized.  In fact, for part of one reacting flow code (Figure 2), 50%
of the operations can be recognized.  However, this preliminary work posed several
more questions: Can additional semantic details be represented and recognized?  How
well do the recognition rules work in blind test cases?  What are the limitations of this
procedure?
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Figure 1:  GUI display for the semantic analysis program.  The top window displays
a user’s code; variables and expressions may be selected for explanation.  The
middle region explains this selected text.  In this case, the physical quantity is
density, it does not have a grid location, and it has the displayed dimensions, units,
and derivation.  The bottom region displays the semantic dictionary/lexicon.

To answer these questions, the procedure’s representation and recognition of semantic
details has been significantly extended, including expert parsers for vector analysis,
object analysis (the object of the formula), array reference/assignment analysis.  Also,
existing expert parsers have been refined and extended.  A measure of the expert
parsers is given in Table 1.  Table 2 samples the rules represented in these parsers.
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Figure 2: Graph showing the increase in expression understanding as semantic
declarations are added to twenty subroutines from the ALLSPD code. The
subroutines contain 5278 non-comment FORTRAN statements and 3431 operations
to understand. Further work will increase the understanding fraction. The analysis
results reflect the analysis code’s quality and not the quality or ability of the ALLSPD
code.

Aspect Analyzed Parsers Parser
Rules

Fundamental
Equations

Quantity-Math 5 772 72

Quantity-Physical 3 766 114

Value / Interval 2 223 27

Grid Location 4 1801 235

Geometrical Entity 1 447 20

Vector Entity 1 300 15

Non-Dimensional 1 72 5

Dimensions 1 59 10

Units 1 71 14

Object Analysis 1 128 10

Array Analysis 2 121 3

Table 1: Aspect analyses performed by the semantic analysis procedure including
number of parsers for each aspect, number of Yacc1 parser rules, and fundamental
equations. Equation (1) corresponds to a fundamental equation; some equations
require several parse ules.rr
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        Mathematical, Numerical
                     Quantity

                     Physical
                     Quantity

                     Physical
                     Quantity

                    q ⇐ q + 0                    p ⇐ F / area                         oC ⇐ oK – 273.15
                    q ⇐ q * 1                     F ⇐ m * A                      oF ⇐ 1.8 * oC  + 32
                   0 ⇐ q1 - q2                 W ⇐ F * length              ∂m/∂t ⇐ ρ * U * A
                  ∆q ⇐ q1 - q2                Ek ⇐ ½ * m * U2 ν ⇐ µ / ρ
                  Polynomials                   Ru ⇐ k * NA                  Pr ⇐ Cp µ / k

Σq ⇐ q + q + ...                R ⇐ Ru / Mol. wt.       Reynolds ⇐ ρ * U * length/µ
                   q2 ⇐q * q                   R ⇐ Cp  - Cv            u*∂u/∂x- (1/ρ)*∂p/∂x
                  2q ⇐ q1 + q2          Cp ⇐ Σ (Mass Fract.* Cp)                   Uθ ⇐ r Ω

∆2q ⇐ q - 2q  + q                     γ ⇐ Cp  / Cv           (∂m/∂t)corr ⇐ ∂m/∂t √θ / δ
∂q/∂x ⇐ ∆q / ∆x                     w ⇐ p / ρ                Circum ⇐ 2 π r

∂2q/∂x2 ⇐ ∆2q / ∆2x                   c2 ⇐ γ * p / ρ              vol ⇐ length * area
           ∂q/∂y ⇐ ∂q/∂x *  ∂x/∂y                   p / ρ ⇐ R * T            area ⇐ length * length

∇⋅q ⇐ expression              ei ⇐ 1/(γ-1) * p / ρ
∇×q ⇐ expression                    ek ⇐ ½ * U2

                Grid Location,
             Geometrical Entity

∇2q ⇐ expression                     h ⇐ ei + w                      l ⇐ l1 ± l2
q1⋅q2 ⇐ expression                     ho ⇐ h + ek                      l ⇐ l1 */ l 2

               q1×q2 ⇐ expression                     M ⇐ U / c                     g ⇐ g1 ± g2

Jacobian ⇐ expression                 P ⇐ const * T γ/γ-1                     g ⇐ g1 */ g2

                Number Value,
               Number Interval

                    Vector
                     Entity

       Non-Dimensionalization,
           Dimensions, Units

                    n ⇐ n1 ± n2                     v ⇐ v1 ± v2                   D ⇐ D1 ±*/ D2

                   n ⇐ n1 */ n2                  v ⇐ v1 */ scalar                   D ⇐ ftn( D1 )
                   n ⇐ n1 ** n2                surface ⇐ v1 * v2                    d ⇐ d1 ±*/ d2

                   n ⇐  ftn(n1)          scalar ⇐ scalar ± scalar                    d ⇐ ftn( d1 )
                    r ⇐ r1 ± r2          scalar ⇐ scalar */ scalar                    u ⇐ u1 ±*/ u2

                    r ⇐ r1 */ r2            scalar ⇐ Dot Product                    u ⇐ ftn( u1 )
              q = Math/Numerical Quantity;     l = Grid Location;     g = Geometrical Entity;      v = Vector Entity;
          n = Number Value;     r = Number Interval;    D = Non-Dimensionalization;    d = Dimensions;    u = Units

Table 2:  A sampling of expert parser rules used in the semantic analysis method.
Many rules are condensed. Due to decomposition a single operation may involve
multiple independent aspects (units, grid location and quantity for x_coordinate –
x_coordinate), and several rules from this table can apply to it.

To understand the procedure’s generality, that is, if the rules and recognition capability
can apply to a range of codes, the procedure's performance was tested on large blind
test cases.  Semantic declarations for solution variables and coordinates were included
in the ADPAC code (a 3D Navier-Stokes, curvilinear coordinate, turbomachinery code
with 86k lines of code (loc)) and the ENG10 code (an axisymmetric, curvilinear
coordinate, engine simulation code with 20k loc).  The fraction of operations recognized
is shown in Figure 3.  These baseline results provide some initial evidence of generality,
however, how these measurements improve as the procedure develops further is most
important.

NASA/CR—2000-209947
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Figure 3: Graph showing the increase in expression understanding as semantic
declarations are added to two blind test cases. The ADPAC codes contain 86k loc,
and the ENG10 code contains 20k loc. Further work will increase the under-
standing fraction. The analysis results reflect the analysis code’s quality and not the
quality or abilities of the ADPAC or ENG10 codes.

Assessing the future of this procedure is problematic, however experience indicates
that three issues will determine success. First, the large number of formulae used in
scientific codes—even within a field—makes it difficult, but not a priori impossible, to
capture the knowledge necessary for recognition. Second, although one rule
application or inference is necessary to recognize equation (1), and the formula sqrt
(ux

2 + uy
2 + uz

2) involves six inferences, O(102) inferences are often required as
expressions are evaluated and combined. Needing many inferences to find a result
magnifies the risk of failure since an unknown inference, a limitation of this procedure,
or a coding error will terminate the inference chain and leave the result unidentified.
Hence, success of this method depends on good coverage of the domain knowledge, a
robust semantic analysis procedure, and stable procedure coding. Third, repre-
sentation of semantic details has not been a major problem, however continued
success in representing knowledge is important.

Future work will pursue two questions. First, can formulae be added to the expert
parsers so that the knowledge domain is sufficiently covered for good recognition of
general codes? Second, can the procedure be perfected to a useful scientific software
tool? The best way to answer these questions is to develop the procedure further while
testing it on mor

e 

codes.e
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